UNA NUOVA CARTA TROVA CHE LE INONDAZIONI E LE PRECIPITAZIONI ESTREME ERANO PIU’ COMUNI DURANTE LA PICCOLA ERA GLACIALE.

Un recente articolo pubblicato su Quaternary Research, esamina le inondazioni nel Mediterraneo e nelle Alpi francesi nel corso degli ultimi 1400 anni e scopre che le precipitazioni estreme e le inondazioni erano meno comuni e meno estreme durante i periodi caldi rispetto ai periodi freddi. Gli autori trovano “una bassa frequenza delle inondazioni durante il periodo caldo medioevale e gli eventi più frequenti e più intensi durante la piccola era glaciale”.

Il documento fornisce un ulteriore esempio dei dati nel mondo reale, con dati confutabili sulle teorie allarmistiche delle previsioni climatiche (IPCC) che il riscaldamento si traduce in condizioni climatiche più estreme, precipitazioni estreme, o inondazioni. Il documento mostra anche che le temperature estive in Europa sud-occidentale erano più calde durante il periodo di riscaldamento medievale [MWP] rispetto al 2000, e si aggiunge al lavoro di oltre 1000 scienziati che dimostrano che il MWP globale era caldo o più caldo di quello attuale.

Inoltre, il documento mostra che la Total Solar Irradiance (TSI) è bruscamente aumentata di circa 1 Wm-2 durante la maggior parte del 20° secolo, da far impallidire il presunto effetto della CO2 nel corso del 20° secolo [presumibilmente circa 0.35 Wm-2 per la formula dell’IPCC].

 

2016-02-09_204502
Il grafico della presentazione dei poster della stessa carta mostra che le inondazioni sono state più frequenti ed estreme durante la piccola era glaciale.

 

From the latest NIPCC Report:

Paleofloods of the Mediterranean French Alps

Introducing their work, Wilhelm et al. (2012) say that “mountain-river floods triggered by extreme precipitation events can cause substantial human and economic losses (Gaume et al., 2009),” adding that “global warming is expected to lead to an increase in the frequency and/or intensity of such events,” citing the IPCC (2007), “especially in the Mediterranean region (Giorgi and Lionello, 2008).” They then proceed to conduct a historical examination of floods in the French Alps.

Working at Lake Allos (44°14’N, 6°42’35” E) – a 1-km-long by 700-m-wide high-altitude lake in the French Alps – Wilhelm et al. carried out a coupled bathymetric and seismic survey of the lake’s sediment infill, analyzing three sediment cores for grain size, geochemical composition, total organic carbon content, and pollen content and identity; while small-size vegetal macro-remains (pine needles, buds, twigs and leaves) were sampled at the base of the flood deposits and used for AMS 14C analysis, which was conducted at France’s LMC14 carbon-dating laboratory. And although acknowledging the complicating fact that “changes in vegetation and/or land-use can modify soil stability/erodibility,” they report that “the size of the coarsest sediment fraction still reflects stream flow velocity,” citing Beierle et al. (2002) and Francus et al. (2002).

In further discussing their methodology, the thirteen French scientists report that some 160 graded layers of sedimentary deposits over the last 1400 years were compared with records of historic floods; and they indicate that these comparisons “support the interpretation of flood deposits and suggest that most recorded flood events are the result of intense meso-scale precipitation events.” And they make a point of noting that the temporal history of these deposits reveals “a low flood frequency during the Medieval Warm Period and more frequent and more intense events during the Little Ice Age.”
Once again, we have another example of climate-alarmist (IPCC) contentions widely missing the mark when it comes to predicting which temperature extreme – hot or cold – produces both more frequent and more intense precipitation events, as well as the flooding that accompanies them.
Reference:
Wilhelm, B., Arnaud, F., Sabatier, P., Crouzet, C., Brisset, E., Chaumillon, E., Disnar, J.-R., Guiter, F., Malet, E., Reyss, J.-L., Tachikawa, K., Bard, E. and Delannoy, J.-J. 2012. 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quaternary Research 78: 1-12.
Additional References
Beierle, B.D., Lamoureux, S.F., Cockburn, J.M.H. and Spooner, I. 2002. A new method for visualizing sediment particle size distributions. Journal of Paleolimnology 27: 279-283.
Francus, P., Bradley, R.S., Abbott, M.B., Patridge, W. and Keimig, F. 2002. Paleoclimate studies of minerogenic sediments using annually resolved textural parameters.Geophysical Research Letters 29: 10.1029/2002GL015082.
Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaskovicova, L., Bloschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., Sempere-Torres, D., Stancalie, G., Szolgay, J., Tsanis, I., Velasco, D. and Viglione, A. 2009. A compilation of data on European flash floods. Journal of Hydrology 367: 70-78.
Giorgi, F. and Lionello, P. 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90-104.
IPCC. 2007. Climate Change 2007: The Physical Science Basis. Solomon, S., Qin, D., Manniing, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.